
1

Design and Implementation of Property-Oriented
Detection for Link State Routing Protocols

Feiyi Wang, Fengmin Gong, Felix S. Wu, Hairong Qi

Abstract— This paper presents a new intrusion detection approach,
property-oriented analysis and detection (POD). We discuss both the
generic paradigm of this new approach and our design and implementa-
tion experience within the context of link state routing system. A routing
system is modeled as a set of distributed processes. A property is de£ned as
a state predicate over system variables. For link state routing protocol, the
overall converging property P is de£ned as the “equality” among routing
information bases maintained by all processes. We decompose routing pro-
tocol into different computation phases and specify them using generic In-
put/Output Automata (IOA). For each phase, we use state predicates (live-
ness and safety property) as our guide for observation and analysis. The
goal of the detection algorithm is to construct a validation path based on the
history to determine if the fault is natural or malicious when the property P

is rendered invalid by faults. The contribution of this paper is three-fold:
First, this new detection paradigm proposed differs from the traditional
signature based or pro£le based intrusion detection paradigms in the sense
that it utilizes stable property as a starting point, and correlates the his-
tory and future to validate changes caused by natural faults and identify
the malicious faults in the system; Second, by exploring primary concerned
system properties, we show that detection effort can be conducted in a more
focused and systematic fashion. Third, our design and implementation ex-
perience shows that how this approach can be effectively applied in complex
distributed system, i.e., link state routing system.

Keywords— Intrusion detection, distributed system monitoring, security
management

I. MOTIVATION AND RELATED WORK

INTRUSION detection (ID) as a second line of defense is in
no doubt attracting more and more research attention these

days. The basic approaches of ID can be generally classi£ed as
either signature-based or statistical-based. Signature-based de-
tection relies on its understanding of the nature of the attack and
identify a particular attack by its state transition sequences or
patterns. Statistical-based detection bases on the comparison of
past-observed-normal and under-or-after attack statistical pro-
£le.

Our previous work has been focusing on vulnerability analy-
sis for link state protocol [1], [3], building both statistical-based
[4] and £nite state machine-based [5] detection engine under Ji-
Nao [6], [7] project framework. We also explored the effective
network management based approach to do similar intrusion de-
tections [9], [10]. Some of these traditional techniques includ-
ing £nite state based and statistical-based approaches used in
our system have been studied in other context for intrusion de-
tection as well [11]. Our experience reveals similar problems

Feiyi Wang is with Advanced Network Research Group, MCNC, Research
Triangle Park, NC. Email: fwang2@mcnc.org

Fengmin Gong is with Intrusion Detection Technology Division of IntruVert
Network Inc. Email: fengmin@intruvert.com

Felix S. Wu is an associate professor in University of California, Davis, Email:
wu@cs.ucdavis.edu

Hairong Qi is an asssitant professor in University of Tennessee, Knoxville.
Email: hqi@utk.edu

This work is sponsored by U.S. Department of Defense Advanced Research
Projects Agency and U.S. Air Force Rome Laboratory under contract F30602-
96-C-0325.

that are faced by other researchers, some of which are ampli£ed
by the unique characteristics of routing system. These problems
are summarized next.

Most of the previous intrusion detection approaches are based
on certain attack models, which are developed with the un-
derstanding of the vulnerabilities of the system from attacker’s
point of view: (1) where are the weak points? (2) how can one
exploit and compromise the system? One way of doing vulnera-
bility analysis is to check system’s operational behavior against
possible attacker’s cause of actions. This approach is dif£cult
because it needs good models for both system itself and the po-
tential attackers. Routing system as a distributed concurrent sys-
tem can exhibit a wide variety of possible behaviors. Reasoning
directly about these behaviors can become quite complex, with
many different cases to consider. Moreover, as an intelligent en-
tity, an attacker can behave in a highly unpredictable fashion.
It seems that any pro£les established for them can be circum-
vented one way or the other given the reasonable understanding
of basic techniques used to pro£le them. It is not clear if there
are satisfactory methods to cope with this complexity.

This uncertainty of potential vulnerabilities and complexity
of system behavior directly impacts the corresponding detection
algorithm. For example, the £nite state machine-based (FSM)
approach adopted in our previous JiNao project captures the
“signatures” of attacks we can deduce based on the case anal-
ysis on system and attacker’s behaviors. However, it is hard to
assess the detection coverage because each attack signature has
to be discovered and programmed into the engine. Overall, there
is more of art than science for the approach. To overcome the
complexity and uncertainty encountered in our previous studies,
a new detection algorithm is presented in this paper. It bases
upon two fundamental ideas: First, for any distributed systems,
even though the system operational behavior can be quite com-
plex, it is possible to focus on the critical properties that concern
us the most in order to simplify and organize the analysis pro-
cess; Second, in order to validate the current system state, it is
necessary to correlate system history. This idea re¤ects the ba-
sic philosophy that one cannot understand the present without
learning the history. These two ideas are closely related to each
other. The former (property analysis) provides the foundation,
while the latter step is an instantiation toward constructing the
detection algorithm.

The rest of the paper is organized as follows. Section II de-
scribes the general paradigm of POD approach and basic steps to
apply it in a routing system. Section III presents a summariza-
tion of property analysis for link state routing system.1. Sec-
tion IV-A discusses various design and implementation issues

1Limited by space, we omit the IOA speci£cation and proof part, interested
readers can refer to [12] for more details

2

related to POD algorithm in GIANT (Global Intrusion Assess-
ment Through Distributed Decision Making) framework. Sec-
tion V analyzes our experimental results and make conclusion
remarks.

II. PROPERTY-BASED ANALYSIS AND DETECTION

A. Generic Paradigm of POD Approach

In general, if we can completely specify a system’s properties,
also assume that it is possible to monitor and verify these prop-
erties at run time, then one can claim to able to able to detect all
the faults. However, it would not be practical for any compli-
cated system. A natural solution would be to focus on critical
properties of the system which concern us the most. Therefore,
the challenges are what properties should we consider as critical
properties and how do we verify that a system does hold these
properties.

We £rst consider a simple example and then outline the gen-
eral steps to take for applying the POD in another domain. Sup-
pose we want to do intrusion detection for a banking account,
which has $1,000 balance. To further simply the exposition, we
assume that there is no withdrawal, no deposit and no interest
at all. It is evident to see that x = $1,000 is the critical prop-
erty for the system: any time this property is violated, we know
that some thing goes wrong and an alarm should be triggered.
Figure 1 illustrates the general steps to take when applying this
approach.

Define a domain of critical properties
which are of most interest to verify

POD methodology

Define a complete/abstract system
specifications

Define a domain of natural faults,
which can potentially invalidate
the properties defined above

Define a set of computation phases,
actions, events and their relations
which can support the property
domain

POD algorithm: define procedures to
validate all the violations based
on the natural fault domain defined

Fig. 1. Illustration of general POD methodology

The basic steps to be performed are: (1) We should have a
good speci£cation of the target system. This step is critical
since all properties will be derived and proved from it. (2) A
complex system often exhibit a variety of properties, we must

clearly de£ne a domain of “critical property” that we are mostly
concerned to monitor and verify. Domain of interest can cer-
tainly grow with more understanding of system itself. However,
the boundary is vital since this dictate the detection coverage
of the ID system. (3) We need to inspect if there are inherent
natural faults inside the system which can invalidate the de£ned
properties. In our simple banking example, there is not such a
natural fault set, i.e., any faults which cause x 6= 1000 should be
considered a compromise of the system. However, as we can
see later, such natural faults could be quite common in a routing
system. (4) We need to de£ne a set of phases and procedures
which make the system uphold these properties. (5) A detec-
tion algorithm is in essence a process of verifying these phases
and procedures are faithfully followed by examining and corre-
lating both the history and potential future traces. Much more
details on how this general paradigm applied and implemented
in practice will be discussed in later sections.

B. POD Methodology Applied in Link State Routing

To apply the above POD methodology to a complex system
such as link state routing, we £rst make the following observa-
tions: (1) all the vulnerability analysis and attacks we have come
up so far, they all eventually manifest some illegal changes to the
routing information base. (2) In link state routing protocol, rout-
ing information base is essentially a topology database, which
does not change very frequent in normal situations. (3) these
routing information base information is readily available to an
outside observer. With these observation in mind, we chose syn-
chronization of routing information base as the critical property
for link state routing.

Link state routing has one important characteristic that each
process’ view of network topology is complete and constructed
by a set of independent LSAs. These LSAs describe neighbors
they are connecting to and states maintained by this process.
When the network is stable (stable in the sense that no fault such
as link failure occurs), the view of network topology by each
process should be synchronized. This characteristic motivates
us to associate it with liveness property of “something good”
(routing information base is synchronized) eventually happens.
The properties can be satis£ed if “nothing bad” (natural or ma-
licious faults) happens. We make more speci£c de£nitions as
follows:

A routing system R is modeled by a set of processes p1, p2,
. . . , pn, each of which is associated with a set of local program
variables. Each process possesses a meta variable called routing
information base (RIB) that consists of a set of LSAs. Let P

be a state predicate de£ned over variables of R, that is, P(S)
is either true or false for a global state S of R. The predicate
P is said to be a stable property of R if P(S) implies P(S′)
for all global states S′ of R reachable from the global state S
of R. Examples of stable properties in traditional environment
are “computation has terminated”, “the system is deadlocked”,
etc. In the context of our discussion, the stable property P of
routing system is de£ned as:

P , p1(RIB) = p2(RIB) = . . . = pn(RIB)

Strictly speaking, the stable property P is not stable once a
fault, such as link failure, occurs. Just like “the system is dead-

3

locked” is not stable any more if the deadlock is “broken” and
the computation is re-initiated [13]. To keep the exposition sim-
ple, we divide a system computation into several phases. Each
phase has the characteristics that: (1) reaching stable property
represents the termination of one particular phase, and (2) devi-
ating from stable property starts a new phase. The key point is
that P de£ned here provides us a starting point for observation.
There must be a trigger event which renders the system unsta-
ble. One might or might not be able to observe such a trigger
event, but the most important effect one will observe is: P is in-
valid. Our detection algorithm starts from this point to construct
a validation path. A validation path is essentially a correlation
process which can correlate the past events (history) to validate
if the previous computation phases are followed according to the
speci£cation and their function properties are satis£ed. If such
validation does not hold, it is deemed as an intrusion event and
the corresponding alarm should be triggered.

As mentioned above, we are reducing the task of validating
history by validating the properties. Therefore, the critical prop-
erties de£ned have a direct impact on the validation process.
From the wisdom of distributed program analysis, we £nd that
there are two kinds of prominent properties which are capable
of capturing and characterizing the distributed behavior – safety
property and liveness property. The safety property has the form
of “some things are not allowed to happen”. It is analogous to
partial correctness and expressed by invariant assertions which
must be satis£ed by the system state at all times. Liveness prop-
erty has the form of “some things will happen.” Examples in-
clude termination requirements in sequential programs. Safety
and liveness properties are useful guidelines for helping us es-
tablish validation path for each phase. Note that even though
theoretically it is possible that all properties can be expressed
directly using assertions [14], we are not attempting to do so due
to vast amounts of states for any practical protocols. The prop-
erties we propose and thereafter prove are the primary function
properties that are supported by protocol speci£cation and that
are suf£cient to guarantee the convergence property P .

To realize the above idea in a practical link state routing sys-
tem such as OSPF, there are two major steps we have to take:

• An abstract routing system based on OSPF protocol needs to
be speci£ed. The goal is to capture the essence of link state rout-
ing and keep the important details visible, while at the same time
simplify other insigni£cant aspects. The simpli£ed system pro-
vides the necessity of giving more precise speci£cation of pro-
tocol behavior. Partitioning system into multiple computation
phases further reduces the dif£culties of tackling such a compli-
cate distributed system. To specify each computation phase of
OSPF, we use IOA for formalization, and prove that their prop-
erties are valid and supported by the speci£cation. (Section III)
• A detection algorithm that constructs the validation path is
then developed based on both the protocol speci£cation and its
corresponding critical properties for each phase.

We also consider the various aspects of applying this new
POD approach in a practical context. This is presented in Sec-
tion IV-A. We further take examples of malicious attacks devel-
oped in our previous work to illustrate how the detection algo-
rithm works.

Synchronized RIB

Faults

 Initial State Faults
Neighbor Relationship

Full Database Exchange

Faults
DB Exchange

Flooding

HELLO

Fig. 2. An abstraction of state transition

III. LINK STATE ROUTING PROPERTY ANALYSIS

A. Partition and Abstraction

As an Internet standard, OSPFv2 speci£cation [15] includes
many details which are not essential for our discussion. The
procedure we presented simpli£es it in three aspects: (1) OSPF
allows sets of networks to be grouped together and such a group
is called an area. Therefore, routing in OSPF can take place in
two levels: inter-area routing and intra-area routing. Although
this information hiding enables a signi£cant reduction of rout-
ing traf£c in practice, we only consider ¤at area routing, i.e.,
backbone routing; (2) OSPF considers many different network
types on top of which it is running, and has corresponding mech-
anisms to best utilize it. For example, it reserves multicast ad-
dress 224.0.0.4 and 224.0.0.5 for establishing neighbor re-
lationship on a broadcast network such as Ethernet. Here, we
consider primarily point to point network; (3) To inter-operate
with other routing protocols such as BGP, OSPF de£nes AS-
external-LSA to describe the routes not originated from the do-
main, which we consider inessential in our discussion.

Based on this simpli£cation, we partition OSPF routing pro-
tocol into Hello, DB exchange and Flooding phases, an abstrac-
tion of state transition driven by these three phases is illustrated
in Fig. 2. In the rest of this section, we introduce basic no-
tations for routing protocol speci£cation, then give an abstract
algorithm of LSRP based on the three-phase partition. We argue
that LSRP algorithm can maintain up-to-date topology informa-
tion.

We use p, q, r to denote individual process, and dot concate-
nation to represent data structures associated with that process.
For example, p.RIB and p.LSA denote the p’s routing infor-
mation base and an LSA in the p.RIB respectively. We use
LSAj

i
to distinguish the LSA’s originator i and the neighbor j

who relays this copy of LSA over during the ¤ooding phase.
When the context is clear, we skip the process pre£x for the
associated data structure we are referring to. p.nbrS is an ar-
ray of neighbor states, maintained by process p for each of its
neighbors. It records what process p thinks what its neighbor
state should be. This neighbor state of i satis£es: p.nbrS.[i] ∈

4

{Down, Init,ExStart,Exchange,Loading,Full}. Another inter-
mediate state 2way is skipped because this state indicates that
adjacency should not be established. Within our domain of
discussion, all processes are valid to establish the adjacency,
so it is safe to ignore the state. In our speci£cation, the se-
quence is totally ordered with respect to relation <. For ex-
ample, p.nbrS[i]≤ ExStart implies p.nbrS[i] can be any one of
Down, Init, and ExStart. We use p.nbrO and p.nbrA to denote
the set of passive outgoing neighbors 2 of p and active neighbor
set of p. p.nbrO is usually the a-priori knowledge of p, while
p.nbrA is established dynamically, p.nbrA⊆ p.nbrO. The only
communication primitives used in our speci£cation are send and
recv. Before we go into details on each computation phase’s al-
gorithm, a high level link state routing algorithm is presented
below.

Algorithm 1 LSRT: process i’s algorithm
1: var i, j, k: process id
2: var m, m′: local topology view
3: var nbrO: passive neighbor set, pre-con£gured
4: var nbrA: active neighbor set, initially empty
5: repeat
6: Once i becomes operational:
7: for each neighbor j ∈ nbrO do
8: H(i, j)
9: end for
10: for each neighbor j ∈ nbrA do
11: DB(i, j)
12: end for
13: Once i’s local view changes:
14: if link 〈i, j〉 becomes operational then
15: H(i, j)
16: DB(i, j)
17: else
18: m := changed local view
19: F(j,m)
20: end if
21: Once i receives new updates from neighbor j:
22: m′ := new updated view
23: F(i,m′)
24: until no more new updates

H(i, j) denotes Hello phase which is to establish the neighbor
relationship between processes i and j. If the step is success-
ful, then nbrA := nbrA∪{j}. In this sense, H(i, j) is a session
management protocol, responsible to open and close a session
between two neighbor processes. All subsequence information
exchange is based on the assumption that there is open session
in between. DB(i, j) denotes DB exchange phase which is to ex-
change complete RIB between i and j. DB(i, j) phase is called
when there is new link or new process coming up. It is partic-
ularly helpful to expedite database convergence when two dis-
connected networks reconnect. F(i, j,m) denotes the ¤ooding
step, whenever new update (other process’ local view changes)
received or self’s local view changes, this phase will be called

2passive outgoing neighbors is de£ned as a pre-con£gured knowledge on the
possible neighbor processes, which is a equal or subset of physical neighbor
processes

for propagating these updates. If we assume that ¤ooding rules
can guarantee that any new update information will reach every
connected process, then it is evident that the algorithm has the
property: Assume that the topological changes cease at some
time, then, eventually, every process in the network knows the
correct topology of its connected component. This property can
be proved by induction on the distance from every node. The
base case follows the assumption that each process knows its
local topology status. The induction follows from the one-way
nature of the ¤ooding. Subtle issues related to session manage-
ment and ¤ooding will be discussed in the following sections.

B. Property Speci£cation and Analysis

In this section, we summarize properties de£ned for each
computation phases discussed above, with particular emphasis
on ¤ooding phase since it plays such a crucial role in link state
routing system. Formally, the correctness of these properties can
be validated through IOA speci£cation.

Property 1 Hello phase satis£es: for any two process i and j:

alive(i)∧alive(j)∧alive(〈ij〉) leads to

(i.nbrS[j] = ExStart)∧ (j ∈ i.nbrA) (1)

Property 2 Hello phase satis£es: for any two process i and j:

alive(i)∧ (¬alive(j)∨¬alive(〈ij〉)) leads to

i.nbrS[j] = Down∧ j 6∈ i.nbrA (2)

Property 3 Hello protocol guarantees that the neighbor rela-
tionship is bidirectional:

RID(j) ∈ i.nbrA leads-to RID(i) ∈ j.nbrA. (3)

Property 4 For any two processes i and j, without losing gen-
erality, if during the ongoing DB exchange session between i
and j, i does not receive any new LSA updates, then:

i.nbrS[j] = Full⇒ i.RIB⊆ j.RIB (4)

If j at the same time does not have new LSA received either, then
we claim that DB exchange will leads-to

i.nbrS[j] = Full∧ j.nbrS[i] = Full⇒ i.RIB = j.RIB (5)

Routing protocol should keep only the most up-to-date infor-
mation in the database, Therefore, when a routing process thinks
it possesses a piece of new information and decides to ¤ood it
(in this case, a LSA) to the whole routing domain, one of the
key issue is: how do we judge the success of this ¤ooding? i.e.,
desirable properties. Without loss of generality, we formally de-
£ne this property using the state variables de£ned above and the
¤ooding algorithm establish the truth of DFP(LSA),

DFP(LSA) , ∀i : alive(i)⇒

newer(i.LSA,LSA)∨ equal(i.LSA,LSA) (6)

, where i represents process, LSA denotes the new information
being ¤ooded, i.LSA represents the corresponding information

5

i already have (If i does not have this information at all, we
regard i.LSA as NULL). equal and newer are assumed functions
that can compare the freshness between two LSAs. With this
global property in mind, we further de£ne truth that should be
established from each individual process’s perspective:

DFP(i,LSA) , ∀j : j ∈ i.nbrA⇒

newer(j.LSA,LSA)∨ equal(j.LSA,LSA) (7)

where the formula basically says for each individual process, the
truth of successful ¤ooding is that it has made effort that each of
their functional neighbors to have either this new information, or
newer information. With an extra requirement that all functional
process are connected, it is not hard to come to this conclusion:3

Property 5 If each process i establishes the truth of
DFP(i,LSA), then the routing system therefore establishes the
truth of DFP(LSA)

IV. POD DETECTION ALGORITHM AND ITS

IMPLEMENTATIONS

The property oriented detection algorithm (POD) is based on
the assumptions that every process holds a routing information
base (RIB) which consists of a set of (all) non-faulty LSAs when
the system is in stable state. We treat such a stable state P as
an Init state for the detection algorithm. Also, we assume that
a potent observer p0 is doing continuous observation on all n
processes.

One observation on all the routing attacks we have analyzed
before is, to affect routing behavior, it boils down to force an
unexpected change in routing information base (RIB). In turn,
a change on RIB will re¤ect a change on one or more LSAs,
which are a set of descriptions on link status. If we have such
potent observer, then we can observe the £rst time when RIB
changed. In reality, we have to rely on either the real time in-
quiry or the traces generated by running process, which is the
topic of Section IV-A. The detection algorithm takes the advan-
tage of this clear starting point and then enumerates all possible
cases on this LSA. For each possible case, we de£ne its corre-
lation actions based on the following principles: (1) by look-
ing at the relevant process’ history to see if we can construct a
validation path which leads to the shift from the stable property
P . Although there may be vast amounts of details constituting
to the history of these processes, our attention is on the prop-
erties de£ned for each computation phase. It is our belief that
these properties characterize each phase and simplify the valida-
tion process (2) we also need to inspect the future, which should
be a converging process, i.e., the system should (under normal
situations) converge back to the stable state P . For a formal
speci£cation of this algorithm, please refer to [12] and [16]. In
the following sections, we focus on discussing its implementa-
tion considerations and trace analysis.

A. POD Implementations

The overall property P is synchronization of RIB. We as-
sume that routing system starts with a “clean” state, meaning

3For more details on proof, please refer to [12], [16].

that at some point after initialization, RIB is stabilized and there-
fore we can £nd a synchronized snapshot of it. To realize this
in practice, we have to be able to have access to RIB. If we
have the source code, it is easy to adapt it to dump RIB when-
ever it changes. Routing software such as GateD even provides
a private interface for you to inquiry on RIB, which makes it
possible to periodically “poll” the information out. Each RIB
usually consists of quite a few LSAs and each LSA consists of
quite a few links. If we do comparison based on each data £eld,
it can be very time consuming. In practice, we employ a tech-
nique called “checksum comparison”. This technique computes
each RIB with same checksum algorithm and compare only the
result of checksum. Algorithms such as MD5 possesses the fol-
lowing property: mathematically, there is little chances that two
difference input messages can have the same checksum. There
are cases that RIB’s get partially synchronized in the sense that
some parts of topology converge faster, each RIB of process is
equal at some instance, then the synchronization is broken by
new updates. This is not a concern of POD detection algorithm
since at this stage, the system is assumed clean and the updated
should be normal. POD should validate the changes as usual
and update its synchronization point correspondingly.

An implicit assumption is that network topology will cease
the changes in £nite time so that RIB will eventually converge
and the frequency of the changes should be able to be handled
by validation process. Our observation on test-bed is that link
and process failures are indeed rare in a medium sized environ-
ment (10-50 routers). Depending on how many neighbors one
router is physically connected, the average update of RIB (with
three neighbors) is 10 minutes, and converging process usually
takes seconds. This is radically different from backbone (inter-
domain) routing, where the routing databases with hundreds of
thousands entries are constantly changing and updating. For a
single route to converge, it can take 5 to 30 minutes. POD in its
pure form is not suitable for this environment.

The steps POD performs for each RIB changes are based on
algorithm presented on Page 4. Each checking involving either
H and DB, or H, DB, and F , or F phase alone. In each case, the
properties checked are suf£cient to guarantee the correct con-
verging behavior for the involved processes. We further details
on how to validate properties for each phase.

In Hello phase, we have three properties to consider. Property
(1) claims the neighbor establishment requirement: if two neigh-
bor process and the link between them are operational, then
the neighbor state nbrS should eventually transit from Down
to ExStart and the neighbor ID will be added to set of nbrA.
Property (2) claims that maintenance requirement: if one pro-
cess is operational but its neighbor or link between them are not
operational, then neighbor state nbrS should eventually transit
to state Down; Property (3) claims the neighbor relationship is
bidirectional, i.e., eventually, both neighbor IDs must exist in
both processes’ nbrA. Property (1) should be validated when
the process starts up. Property (3) must be satis£ed during the
operation of process and property (2) should be validated when
link is removed from the RIB. Since Hello message is sent peri-
odically and the message body includes the current neighbor ID
list, there is no problem for an observer to validate these proper-
ties.

6

TABLE I

MAXSEQ ATTACK: FIRST SYNCHRONIZED RIB SNAPSHOT

152.45.4.208 152.45.4.210

<rib
lclock="59"
reporter="152.45.4.208"
LSA_num="3"
RIB_checksum="30243"
<nbr

id="152.45.4.210"
state="FULL" />

<nbr
id="152.45.4.207"
state="FULL" />

<lsa
originator="152.45.4.208"
link state ID="152.45.4.208"
num_of_links="2"
relay_rid="152.45.4.208"
lsa_age="0"
lsa_chsum="10336"
lsa_seqno="2"

<link
linkid="152.45.4.210"
linkcost="2" />

<link
linkid="152.45.4.207"
linkcost="5" />

</lsa>
<lsa

originator="152.45.4.210"
link state ID="152.45.4.210"
num_of_links="2"
relay_rid="152.45.4.210"
lsa_age="0"
lsa_chsum="10594"
lsa_seqno="2"

<link
linkid="152.45.4.208"
linkcost="1" />

<link
linkid="152.45.4.207"
linkcost="1" />

</lsa>
...

/>

<rib
lclock="60"
reporter="152.45.4.210"
LSA_num="3"
RIB_checksum="30243"
<nbr

id="152.45.4.208"
state="FULL" />

<nbr
id="152.45.4.207"
state="FULL" />

<lsa
originator="152.45.4.210"
link state ID="152.45.4.210"
num_of_links="2"
relay_rid="152.45.4.210"
lsa_age="0"
lsa_chsum="10594"
lsa_seqno="2"

<link
linkid="152.45.4.208"
linkcost="1" />

<link
linkid="152.45.4.207"
linkcost="1" />

</lsa>
<lsa

originator="152.45.4.208"
link state ID="152.45.4.208"
num_of_links="2"
relay_rid="152.45.4.208"
lsa_age="0"
lsa_chsum="10336"
lsa_seqno="2"

<link
linkid="152.45.4.210"
linkcost="2" />

<link
linkid="152.45.4.207"
linkcost="5" />

</lsa>
...

/>

In DB exchange phase, we have one primary desired prop-
erty and two sub-properties to consider. Property (4) and (5)
claim that if process i does not receive any new updates during
the execution of DB exchange, then i.RIB is a subset of j.RIB;
if both processes i and j do not receive any new updates dur-
ing the execution of DB exchange, then i.RIB equals to j.RIB.
To reach this (partial) synchronization point, there are two sub-
properties to be satis£ed. Property D1 claims the two processes
in DB exchange must establish the Master/Slave relation and a
initial sequence number must be decided by Master; Property
D2 claims two processes must fully exchange RIB summary in-
formation and establish the difference set LSR. DB phase only
happens when a process or link just becomes operational. When
DB exchange only brings partial synchronization, a Flooding
phase must be followed to fully synchronize RIB. The status of
RIB can only be observed and validated by the runtime dump,
Master/Slave election process can be observed and validated by
the DB type message exchanged.

In Flooding phase, we de£ned one overall desired property
(6) and one property (7) which needs to be satis£ed by each
individual process. It is not dif£cult to validate the second prop-
erty for each individual process. However, it is more important

to validate “when” should ¤ooding procedure are called for and
“what” should the procedure ¤ood. The ¤ooding validation is
more related to overall protocol execution. As we discussed
above, if DB phase can only establish the partial synchroniza-
tion, a ¤ooding phase should be followed. This is essentially
the case where new LSU update received. There are four cases
where a process will perform ¤ooding: (1) local topological
view changes. This includes a new neighbor process starts up
or a new link becomes operational. The updated LSA is a self-
originated with sequence number increased by one. This new
LSA needs to be ¤ooded to each process in nbrA. (2) a new
LSA update received but not originated by itself or the received
LSA with a MaxAge. This new LSA needs to be ¤ooded to ev-
ery process in nbrA except the incoming neighbor process. (3)
a new self-originated LSA update received. A newer LSA with
sequence number increased by one needs to be ¤ooded to every
process in nbrA. (4) An LSA in its own RIB reaches MaxAge.
This LSA needs to be ¤ooded to every process in nbrA. The
¤ooding phase is validated by mainly observing incoming and
outgoing link state update.

In the case where multiple topology changes happen to the
RIB at the same time, this will increase the implementation dif-

7

TABLE II

MAXSEQ ATTACK: FIRST RIB CHANGES DETECTED AT 210

152.45.4.208 152.45.4.210

<rib
lclock="59"
...

/>
<send
lclock="93"
reporter="152.45.4.208"
to="152.45.4.210"
pktype="LINK STATE UPDATE"

/>
<send

lclock="94"
reporter="152.45.4.208"
to="152.45.4.207"
pktype="LINK STATE ACKNOWLEDGEMENT"

/>
<rib

reporter="152.45.4.208"
LSA_num="3"
RIB_checksum="30243"

<nbr
id="152.45.4.210"
state="FULL" />

<nbr
id="152.45.4.207"
state="FULL" />

<lsa
originator="152.45.4.208"
link state ID="152.45.4.208"
num_of_links="2"
relay_rid="152.45.4.208"
lsa_age="0"
lsa_chsum="10336"
lsa_seqno="2"

<link
linkid="152.45.4.210"
linkcost="2" />

<link
linkid="152.45.4.207"
linkcost="5" />

</lsa>
...

<rib
lclock="91"
reporter="152.45.4.210"
LSA_num="3"
RIB_checksum="30116"

<nbr
id="152.45.4.208"
state="FULL" />

<nbr
id="152.45.4.207"
state="FULL" />

<lsa
originator="152.45.4.210"
link state ID="152.45.4.210"
num_of_links="2"
relay_rid="152.45.4.210"
lsa_age="0"
lsa_chsum="10594"
lsa_seqno="2"

<link
linkid="152.45.4.208"
linkcost="1" />

<link
linkid="152.45.4.207"
linkcost="1" />

</lsa>
<lsa

originator="152.45.4.208"

link state ID="152.45.4.208"
num_of_links="2"
relay_rid="152.45.4.208"
lsa_age="0"
lsa_chsum="10209"
lsa_seqno="2147483647"

<link
linkid="152.45.4.207"
linkcost="6" />

<link
linkid="152.45.4.210"
linkcost="3" />

</lsa>
...

/>

£culty. However, POD algorithm still applies without need of
modi£cation since it tracks the phases for each LSA changes
and treats the multiple changes as seperate runs.

V. EXPERIMENTAL STUDY OF POD

In this section, we discuss a case of malicious faults against
POD detection algorithm. We use MaxSeqNumber attack de-
veloped in [3] as an example against POD algorithm. In this
scenario, attacker forges an LSA instance in the following way:
(1) it sets the LSA sequence number to 0x7FFFFFFF, i.e.,
MaxSeqNumber; (2) it re-computes both the LSA and OSPF
packet checksums. Then this forged packet is re-injected into
the system. This attacking LSA instance will be considered
the “freshest” by other processes because it has the maximum
LSA sequence number. Eventually it will be propagated to
the originator of this particular LSA. The originator, according
to the OSPFv2 speci£cation, “should” £rst purge the LSA in-
stance (setting MaxAge) and then ¤ood a new LSA carrying cor-
rect link status information and the smallest sequence number:
0x80000001. Without this purging, all the processes (except
the originator) will accept the faulty LSA instance. The newly

issued LSA from the originator will have 0x80000001 as the
sequence number which will be considered as the oldest and be
discarded. Figure 3 illustrates the scenario. A previous version
of routing software we tested did not handle this MaxAge correct,
namely the purging of MaxSeqNumber LSA is not done right.
This fault (a combined program implementation bug and mali-
cious attack) renders the illegal MaxSeqNumber LSA staying in
every router’s RIB for up to one hour until it reaches MaxAge.
Potentially, this faulty LSA can cause faulty route calculation.

Table I and II shown here are actual traces from a fully-
connected three nodes network which is part of the GIANT
testbed. The trace format is from the XML DTD de£ned in last
section. Their IP address are 152.45.4.207, 152.45.4.208,
152.45.4.210 respectively. Table I shows the £rst synchro-
nization point: each process has different logical clocks but with
the same checksum as 30243 (decimal). Looking further, we can
compare each LSA inside the RIB, they are and should be the
exactly the same. The right column in Table II shows the £rst
point we detect the change of RIB: in this case, it is a new LSA
instance with MaxSeq number and changed link cost value. Fol-
lowing the detection algorithm, we £rst identify the originator
of this LSA, which is 208. Then we check if Flooding proper-

8

LSA (0x80000001)

LSA (0x80000001)

LSA (0
x7ffff

fff)

LSA (0x7fffffff)
Insert bad LSA

Rejected as "Older"

Rejected as "Older"

Other Routers in this AreaNode A

LSA (0
x7ffff

fff)

LSA (0x80000001)

Neighbors of A

LSA (0x80000002)

LSA (0x80000001)

LSA (0
x7ffff

fff)

LSA (0
x7ffff

fff)

LSA (0x80000002)

Fig. 3. Illustration of max sequence number attack

ties are satis£ed by the originator. To satis£ed ¤ooding prop-
erty, 208 must broadcast the local changed new view to all its
neighbors. As obvious as it is, this type of link attacker can not
replicate the ¤ooding history as long as 208 is not compromised
itself. This can be seen from the left column of the trace £le.
The validation process will fail and raise the alarm.

snapshot snapshot

���

���

���
� �� � �� �	��

� ��

� � � ��
 �

�
� �

� ��
�	� �� � �

� �� �	��

�����

Fig. 4. Comparison of FSM and POD approaches

The comparison of POD with £nite state machine-based
(FSM) approach in JiNao [7]4 merits further discussion. First,
FSM’s focus is on “signature” or “patterns”. Take MaxSeqNum-
ber attack as an example, FSM approach differentiates good
or bad implementation by two patterns: {MaxSeq, MaxAge-
MaxSeq, initSeq, Update} and {MaxSeq, initSeq}5. In other
words, it is specially tailored to catch the bad transitions. In
POD approach, the emphasis is on the speci£cation: the right
phases a process must pass and right properties it must sat-
isfy to validate the passing. Second, FSM approach focuses on

4The expressive and analysis power of £nite state machine is not particularly
relevant here, the FSM referred is limited in JiNao context

5For detailed de£nition, please refer to [5]

the causality relation (critical event transition) within the execu-
tion of a single process. The properties de£ned in POD is not
limited to one process and often carries a strong global sense.
Granted that POD poses challenges to practical system imple-
mentations (you need to observe execution of more than one
process), nonetheless, it is doable and the deduction logic is ac-
tually simpler. Third, although the POD does utilize causality
relationship in the de£nition of properties, this relationship is
granular and has a stronger emphasis on the “snapshot of states”
for computation phases. This comparison is best illustrated in
Fig. 4.

VI. SUMMARY

In summary, we presented design and implementation of
property oriented fault detection approach (POD) within the
context of link state routing. The goal of POD is to construct
a history and/or future validation path to validate the changes
of stable property P , which can be caused either by natural or
malicious faults. As a methodology, POD can be generalized in
other application domain such as ongoing BGP security project
[17]. We believe that POD not only provides an interesting new
angle of studying the vulnerability and intrusion detection of
link state routing protocol, it also delivers a framework, in which
both the vulnerability and detection can be conducted in a more
focused and systematic way.

REFERENCES

[1] F. Wang and S. F. Wu, “On the vulnerabilities and protection of OSPF
routing protocol,” in IEEE 7th International Conference on Computer
Communication and Network (IC3N), October 1998.

[2] Dorothy E. Denning. Cyberspace attacks and countermeasures. In
Dorothy E. Denning and Peter J. Denning, editors, Internet Besieged,
pages 29–55. Addison Wesley, 1997.

[3] B. M. Vetter, F. Wang, and S. F. Wu, “An experimental study of insider
attacks on the OSPF routing protocols,” in The 5th IEEE International
Conference on Network Protocols (ICNP), Atlanta, GA, October 28-31
1997, pp. 293–300.

[4] D. Qu, B.Vetter, F. Wang, R. Narayan, S. Wu, Y. Jou, F. Gong, and C. Sar-
gor, “Statistical-based intrusion detection for OSPF routing protocols
anomaly detection for link state routing protocols,” in The 6th IEEE Inter-
national Conference on Network Protocols, Austin, Texas, October 13-16
1998, pp. 62–70, IEEE Computer Society.

[5] H. Y. Chang, S. F. Wu, and Y. F. Jou, “Real-time protocol analysis for
link state routing,” submitted to Transaction on Information and System
Security for review, 1999.

[6] S. F. Wu, Y. F. Jou, F. Wang, H. Chang, D. Qu, C. Sargor, F. Gong, and
R. Cleaveland, “JiNao: design and implementation of a scalable intrusion
detection system for the OSPF routing protocol,” to appear in the Journal
of Computer Networks and ISDN Systems.

[7] Y. F. Jou, F. Gong, C. Sargor, X. Wu, S. F. Wu, H. C. Chang, and F. Wang,
“Design and implementation of a scalable intrusion detection system for
the protection of network infrastructure,” in DARPA Information Surviv-
ability Conference and Exposition, Hilton Head Island, SC, January 1999,
pp. 422–434.

[8] S. L. Murphy and M. R. Badger. Digital signature protection of the OSPF
routing protocol. In IEEE/ISOC Symposiums on Network and Distributed
System Security, 1996.

[9] F. Wang, F. Gong, F. Wu, and R. Narayan, “Intrusion detection for link
state routing protocol through integrated network management,” in IEEE
8th International Conference on Computer Communication and Network
(IC3N, October 1999.

[10] F. Wang, “Vulerability analysis and protection for link state routing proto-
col,” http://worf.mcnc.org/~fwang2/docs/pre99.ps, September
1999.

[11] Teresa F. Lunt, “A survey of intrusion detection techniques,” Computers
& Security, vol. 4, no. 12, pp. 405–418, December 1993.

[12] F. Wang, Vulnerability Analysis, Intrusion Prevention and Detection for
Link State Routing Protocols, Ph.D. thesis, North Carolina State Univer-
sity, Raleigh, NC, August 2000.

9

[13] K. Mani Chandy, “Distributed snapshots: determining global states of
distributed systems,” ACM Transactions on Computer Systems, vol. 3, no.
1, pp. 63–75, Febuary 1985.

[14] K. Mani Chandy and J. Misra, Parallel Program Design: A Foundation,
Addison-Wesley, 1988.

[15] J. Moy, “OSPF Version 2,” Internet RFC 2178, July 1997.
[16] Feiyi Wang, Fengmin Gong, and Felix S. Wu, “A property oriented fault

detection approach for link state routing protocol,” in Proceedings Ninth
International Conference on Computer Communications and Networks,
Ton Engbersen and E.K. Park, Eds., Las Vegas, Nevada, October 16-18
2000, pp. 114–119.

[17] FNIISC Project, “Fault-Tolerant Networking Through Intrusion Identi-
£cation and Secure Compartments,” http://fniisc.east.isi.edu/,
2000.

[18] J. P. Anderson. Computer Security Threat Monitoring and Surveillance.
Technical report, James P. Anderson Co., Fort Washington, Pennsylvania,
April 1980.

[19] Steven M. Bellovin. Security problems in the TCP/IP protocol suite. Com-
puter Communication Review, 2(19):32–48, April 1989.

[20] Steven Cheung and Karl N. Levitt. Protecting routing infrastructures from
denial of service using cooperative intrusion detection. In New Security
Paradigms Workshop, Cumbria, UK, September 23-26 1997. IEEE Com-
puter Society Press.

[21] N. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed
algorithmns. In F. B. Schneider, editor, Proceedings of the 6th ACM An-
nual Symposium on Principles of Distributed Computing, pages 137–151,
April 1987.

[22] L. Lamport and N. Lynch. Distributed computing: models and methods.
In Jan van Leeuwen, editor, Handbook of Theorectical Computer Science,
volume B, pages 1159–1199. MIT Press, 1990.

[23] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
[24] Susan Owicki and Leslie Lamport. Proving liveness properties of con-

current programs. ACM Transactions on Porgramming Languages and
Systems, 4(3):455–495, July 1982.

[25] Radia Perlman. Network Layer Protocols with Byzantine Robustness. PhD
thesis, Department of Electrical Engineering and Computer Science, MIT,
August 1988.

[26] Jerome H. Saltzer and Michael D. Schroeder. The protection of informa-
tion in computer systems. The Proceedings of IEEE, 63(9):1278–1308,
September 1975.

[27] Fred B. Schneider. Distributed Systems, chapter What Good are Models
and What Models are Good?, pages 17–26. Addison-Wesley, 2nd edition,
1993.

[28] A. Udaya Shankar. An introduction to assertional reasoning for concurrent
systems. ACM Compuing Surveys, 25(3):225–262, September 1993.

[29] Karen E. Sirois and Stephen T. Kent. Securing the Nimrod routing ar-
chitecture. In Proceedings of the 1997 Symposium on Network and Dis-
tributed System Security, pages 74–84, San Diego, California, Febrary 10-
11 1997. IEEE Computer Society Press.

[30] J. Rushby. Critical system properties: survey and taxonomy. Reliability
Engineering and System Safety, 43(2):189–219, 1994.

[31] K. J. Perry and S. Touge. Distributed agreement in the presence of proces-
sor and communication faults. IEEE Transactions on Software Engineer-
ing, 12(3):477–482, 1986.

